
Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

189

File Factoring

12 File Factoring

12.1 Introduction

We saw in Chapter 11 that it would be good to reduce the size of the Record Reconstruction Table. File factoring, or just

factoring for short, is a technique for achieving this goal. (As mentioned in the previous chapter, it can have the efect of

reducing the size of the Field Values Table as well; however, it’s the efect on the Record Reconstruction Table that’s the

real point.) Here in outline is how it works:

•	 Starting with a given user-level relation, and hence a corresponding ile, we decompose that ile “vertically”

into two or more subiles (the oicial term is factors, but there’s a good reason, which I’ll explain in Section

12.3, for preferring the term subiles). Each subile is smaller than the original ile, in the sense that it has

fewer ields, and possibly fewer records, than the original ile. Note: he term vertical decomposition refers to

the fact that the decomposition is done “between ields,” as it were.

•	 We then map each of those subiles into its own Field Values Table and Record Reconstruction Table.

Because the subiles are smaller than the original ile, those Field Values and Record Reconstruction

Tables are smaller than their counterparts would have been for the original ile. In particular, the Record

Reconstruction Tables involve fewer pointers than their original counterpart would have done, a fact that

can have dramatic efects on overall space requirements, as we’ll see.

www.sylvania.com

We do not reinvent

the wheel we reinvent

light.
Fascinating lighting offers an ininite spectrum of

possibilities: Innovative technologies and new

markets provide both opportunities and challenges.

An environment in which your expertise is in high

demand. Enjoy the supportive working atmosphere

within our global group and beneit from international

career paths. Implement sustainable ideas in close

cooperation with other specialists and contribute to

inluencing our future. Come and join us in reinventing

light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Go Faster!

190

File Factoring

In efect, therefore, factoring replaces large tables by smaller ones, such that the total space required for the smaller ones

is less—usually much less, in practice—than that required for the large ones. As I claimed in the previous chapter, it can

thus be seen as a logical compression technique: logical, because the compression in question is performed (conceptually,

at least) at the ile level, before we even begin to think about the question of mapping the data to disk. he net efect is:

a) To make a larger portion of the data—in particular, a larger portion of the Record Reconstruction Table—

permanently memory-resident, and

b) To pack more useful data into each page on the disk, thus providing “more bang for the buck” on each I/O

operation.

he structure of this chapter is as follows. Following this introductory section, I’ll explain the basic idea of factoring by

means of a simple example in Section 12.2; then I’ll elaborate on and generalize from that example in Sections 12.3 and

12.4. In Section 12.5, I’ll explain what’s involved in doing record reconstruction with factored iles. Finally, in Section 12.6,

I’ll point out some additional beneits of factoring, over and above the overriding one of reducing Record Reconstruction

Table space requirements.

12.2 A Simple Example

I have a problem. By deinition, the techniques to be discussed in this chapter (also in the next two) are intended for

dealing with very large data sets, with raw data space requirements measured in the billions of bytes or even more. (Actually

the same was true throughout Part II of the book, but it’s even more true here.) For obvious reasons, however, I can’t

show examples that involve such very large data sets. In what follows, therefore, you’ll have to exercise your imagination

a little; to be speciic, you’ll have to extrapolate from very small examples to the very large databases that actually exist

in the real world.

I’ll build on the parts example from Chapter 8 (see Fig. 8.1 in that chapter). Just to remind you, the relation P in that

example originally had ive attributes, as follows:

Part number: P#

Part name: PNAME

Color: COLOR

Weight: WEIGHT

Location: CITY

Now let’s extend it to include some additional ones—let’s say as follows:

State: STATE

Zip code: ZIP

Phone number: PHONE#

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

191

File Factoring

In practice there might well be other attributes too—for example, part description, street address, and so on—but the

eight listed above are suicient for our purposes.

Perhaps I should explain the semantics a little, in order to make the example a little more intuitively acceptable. Essentially,

I’m taking the combination of CITY, STATE, and ZIP to be an elaboration of the old CITY attribute; I’m assuming that

this combination of attributes identiies the location of the (sole) warehouse where parts of the indicated kind are kept.

PHONE# gives the (sole) phone number for that warehouse. Also, I’ll assume for simplicity that STATE always identiies

a state in the U.S., and ZIP is thus always a U.S. zip code—and I’ll stick to ive-digit zip codes, again for simplicity. (By

the way, did you know that zip is an acronym? It stands for zoning improvement plan.)

Let’s assume further that there are ten million diferent parts, and hence ten million tuples in the parts relation and ten

million records in the corresponding parts ile. Note: I’ll stick to this particular assumption throughout this chapter, and

indeed throughout the next two as well.

Now, the basic parts Record Reconstruction Table is isomorphic to the parts ile (that is, it has the same number of rows

and columns as that ile has records and ields, respectively). So that Record Reconstruction Table now has 80 million

cells, and hence 80 million pointers. Each pointer in turn is 24 bits, and so the total space requirement is 240 megabytes

(240MB). Note: If the Record Reconstruction Table were expanded to include direct pointers into the Field Values Table

as well, the space requirement would double, to 480MB; for simplicity, for simplicity, however, let’s omit these latter

pointers. (Actually the space requirements wouldn’t exactly double, because the Field Values Table would be condensed

and the pointers into it would therefore be less than 24 bits. As I say, however, I’m going to ignore those pointers anyway.)

Assume now for the sake of the example that for any given zip code, there’s just one city and state; that is, if z is a zip code

and c and s are the corresponding city and state, then, whenever a tuple of the original parts relation P has ZIP = z, it also

has CITY = c and STATE = s. In other words, there’s a many-to-one relationship from ZIP to CITY and STATE: Many zip

codes can have the same city and state, but no zip code can have more than one city and state (but see the next section).

Formally, we say there’s a functional dependency from ZIP to CITY and STATE, and we express it thus:

{	ZIP	}	→	{	CITY,	STATE	}	

he general form is LHS → RHS; you can read it as “the right-hand side (RHS) is functionally dependent on the let-hand

side (LHS)” or, more simply, just as “let-hand side arrow right-hand side.” By convention, we enclose the let- and right-

hand sides in braces because they’re both sets of attribute names.

Now, it follows from the existence of the functional dependency from ZIP to CITY and STATE that the parts relation P

contains a great deal of redundancy. Ater all, there are ten million distinct tuples, but there certainly aren’t ten million

distinct zip codes. In fact, I have it on good authority that there are around 38,000 of them (for the whole of the U.S.,

that is)—but to keep the arithmetic simple, let’s round that igure up to 40,000. On average, then, there’ll be 250 distinct

tuples in the relation for any given zip code, and all 250 of those tuples will contain precisely the same values for ZIP,

CITY, and STATE (there’s the redundancy).

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

192

File Factoring

An obvious factoring thus suggests itself: Starting with the original parts ile, let’s decompose it vertically into two subiles,

with ields as indicated below:

Subile 1 Subile 2

P# ZIP

PNAME CITY

COLOR STATE

WEIGHT

ZIP

PHONE#

For example, if the original ile included a record looking like this—

(I’ve shown the ZIP and PHONE# values symbolically for simplicity)——then the two subiles will include records looking

like this:

Subile 1

here’ll be one record in Subile 1 for each part number (10 million records), and one record in Subile 2 for each zip

code (40,000 records). Of course, the original ile can be reconstructed from the two subiles by “joining” them back

together on the ZIP ield (“joining” in quotes because, strictly speaking, join is an operation that applies to relations,

not to iles).

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

193

File Factoring

So Subile 1 has ten million records and six ields, while Subile 2 has 40,000 records and three ields. Each subile has its

own Record Reconstruction Table. he irst has 60 million pointers, still 24 bits each, for a total of 180MB. he second,

however, has only 120,000 pointers, and those pointers are only 16 bits each, for a total of only 240KB (kilobytes, not

megabytes); in fact, the space required for the second Record Reconstruction Table is negligible compared to that required

for the irst. he net efect is that we’ve reduced overall space requirements by around 25 percent.

he foregoing example illustrates the basic idea of factoring. Of course, there’s still quite a lot more to be said, but irst let

me call out a few explicit points here:

•	 For simplicity I’ll assume throughout this chapter that factoring always decomposes a given ile into exactly

two subiles, as in this irst example (barring explicit statements to the contrary, of course).

•	 I’ll also assume that one of those subiles is the “large” subile and the other is the “small” subile, and I’ll

refer to them as such (or sometimes as simply the large and small iles, because of course a subile can be

regarded as a ile in its own right—that’s why I prefer the term subile over the term factor). And I’ll refer to

the corresponding Field Values and Record Reconstruction Tables as “large” and “small” accordingly.

•	 Very important: he small Record Reconstruction Table will usually be much smaller than the large one—as

indeed it was in our example—and can therefore be memory-resident. his is the basic object of the exercise,

of course.

•	 Also very important: Factoring does not have to be done “by hand” (as it were). Rather, it’s done

automatically during the load process, on the basis of certain heuristics that are built into the load utility

and various statistical analyses of the data that are also performed at load time. In other words, the beneits

of factoring are obtained automatically, without any need for human decisions (on the part of the database

administrator in particular).

Note inally that factoring as described above conceptually leads to two separate Field Values Tables, as well as two separate

Record Reconstruction Tables. However, those two Field Values Tables can then be merged back into one as described in

Chapter 9. In a sense, ile factoring might be thought of as a kind of inverse of column merging as described in Chapter

9; column merging means two or more iles map to one Field Values Table, loosely speaking, while ile factoring means

one ile maps to two or more Field Values Tables (but those Field Values Tables are then merged back into one anyway,

as we’ve just seen).

12.3 Elaborating on the Example

In the example in the previous section, we decomposed the original ile on the basis of a certain functional dependency

(FD for short). For that very reason, however, readers knowledgeable in database matters might have found the example

a little unconvincing: Surely the database designer would already have performed the indicated decomposition at the

relational level, precisely because of the existence of that FD? Indeed, such “decomposition at the relational level” is exactly

what the business of further normalization is all about—see, for example, reference [32]. And if the designer had indeed

already performed that decomposition at the relational level, then we would have started of with two distinct relations,

and hence two distinct iles at the ile level, and the question of automatic decomposition of a single ile into two distinct

subiles would never have arisen.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

194

File Factoring

here are several possible responses to this objection, however. Four such are explained in the subsections immediately

following.

“Denormalize for Performance”

he irst point is that, in practice, the database designer might very well not have already performed the indicated

decomposition at the relational level ater all. he reason is that—at least in today’s mainstream systems—full normalization

is oten contraindicated, because the direct-image nature of those systems can give rise to performance problems with

fully normalized designs. he usual argument goes something like this [27]:

1. Full normalization means lots of logically separate relations at the relational level.

2. Lots of logically separate relations at the relational level means lots of physically separate stored iles at the

storage level.

3. Lots of physically separate stored iles means lots of I/O.

For example, given our usual suppliers, parts, and shipments relations, a request to ind London suppliers who supply

red parts will involve two joins: First, join suppliers to shipments (say); second, join the result to parts. (I’m ignoring the

two restriction operations for simplicity.) And if the three relations in fact do map to three physically separate stored iles

as suggested, then those two joins will indeed require lots of I/O and will therefore perform badly. Hence the cry we’ve

doubtless all heard so many times: “Denormalize for performance!”

360°
thinking.

© Deloitte & Touche LLP and affiliated entities.Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Go Faster!

195

File Factoring

Note: Just in case you haven’t heard this cry before, let me elaborate briely. First, of course, normalization is a logical design

discipline for reducing redundancy at the user or relational level. he trouble is, normalization leads to an increase in the

number of relations and hence to an increase in the number of joins required in queries; and (to repeat) in a direct-image

system, that increased number of joins translates directly into a performance hit. Denormalization is an attempt to ix this

latter problem. (Note, however, that denormalization, unlike normalization, can hardly be described as a discipline, being in

fact totally ad hoc.) Denormalization decreases the need for joins by decreasing the number of relations. Unfortunately, of

course, it also increases the degree of redundancy—with negative consequences for updates, and even for some queries. In

my opinion, applying a user-level ix (denormalization) to an internal-level problem (performance) cannot, by deinition,

be the best solution to that problem—but in direct-image systems, it might be the only solution available.

So the foregoing argument—the argument, that is, that the designer might not have already performed the decomposition

at the relational level—is valid, more or less, in a direct-image system. However, it certainly isn’t valid in a TR system; in

a TR system, relations don’t map directly to physical iles, and joins are cheap. In a TR system, in fact, we really can, and

should, go for fully normalized designs at the relational level (I’ll come back to this point in Chapter 15). hus, this irst

response to the objection that the example of the previous section wasn’t very convincing is perhaps not a very strong

one, given the TR context. So let’s move on quickly to the second response ...

Normalization Is Based on Relevant FDs

here’s a popular misconception in the IT community at large to the efect that logical database design requires

normalization to be performed on the basis of all FDs. In fact, of course, such is not the case; rather (as I’ve written

elsewhere [32]), normalization should be performed on the basis of all relevant FDs, not on the basis of all FDs that

happen to exist. In the case of the parts relation, for example, with its attributes ZIP, CITY, and STATE (among others),

the database designer might well decide that the FD

{	ZIP	}	→	{	CITY,	STATE	}	

isn’t very relevant to the problem at hand, and hence that decomposition at the relational level on the basis of that

particular FD is hardly worthwhile. Ater all, CITY and STATE are almost invariably required together (think of printing

a mailing list, for example); what’s more, zip codes don’t change very oten, and thus there doesn’t seem to be much to be

gained by conventional normalization on the basis of that FD. Indeed, there might even be something to be lost; certainly

conventional normalization will make some queries a bit more complex (from the user’s point of view, that is), because

they’ll involve an additional join.

So we’ve arrived at the notion that the data might satisfy certain FDs that the database designer didn’t use as a basis for

normalization and (in all probability) didn’t even declare to the DBMS. Conceivably, in fact, the data might satisfy certain

FDs that the designer wasn’t even aware of—but the load process can still detect such FDs and use them to perform ile

factoring. hus, ile factoring can apply even when normalization might have been applied in the irst place but in fact

wasn’t, for some reason.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

196

File Factoring

Factoring Based on Approximate FDs

he third response is this (and it’s an important one): File factoring can be based on “approximate FDs” as well as on genuine

ones. For example, I’ve been assuming up until this point that the FD

{	ZIP	}	→	{	CITY,	STATE	}	

holds true, but in the real world it doesn’t—not quite. Let me explain. Recall irst that this FD efectively asserts that no

zip code ever corresponds to more than one city and state combination, or in other words that distinct city and state

combinations always have distinct zip codes. Well, there are exceptions; for example, the cities of Jenner and Fort Ross in

California both have zip code 95450. (his kind of thing can happen if a zip code is assigned to some region and then part

of that region subsequently incorporates and becomes a separate city in its own right.) hus, a more accurate statement

is that the “FD” (in quotes because it isn’t really an FD at all)

{	ZIP	}	→	{	CITY,	STATE	}	

almost holds true ... but that almost means we can’t use the “FD” as a basis on which to perform normalization. For suppose

our original parts relation looked like this:

Now suppose we decompose it into two projections as follows:1

Now we have ambiguity: We can’t tell which parts are kept in which city (note that if we join the two projections back together,

we’ll get four tuples, not two). In other words, the decomposition has lost information. (To be valid for normalization, of

course, we do require decompositions to be “nonloss” [32].)

However, the fact that we can’t do normalization in this example doesn’t mean we can’t do factoring. In fact, there are at

least two ways to do it, and I’ll sketch them both briely here.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

197

File Factoring

he irst involves introducing an artiicial identiier, ZCS# say, for each distinct zip / city / state combination. hus, if the

original parts ile looked like this—

—we might replace it by the following two subiles:

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Go Faster!

198

File Factoring

As you can see, the artiicial identiier ZCS# plays a role analogous to that played by candidate and foreign keys in the

relational model—it’s a candidate key for the small subile and a corresponding foreign key in the large one, loosely

speaking. (I say “loosely speaking” because in fact such artiicial identiiers aren’t keys in the relational sense; relational

keys apply by deinition to relations at the user level, while the artiicial identiiers apply to iles at the ile level. But the

parallel is exact.)

So what does the foregoing trick do to our storage requirements? he large Record Reconstruction Table still has 60

million pointers of 24 bits each, for a total of 180MB. However, the small one has only 160,000 pointers of 16 bits each,

for a total of only 320KB. (I’m making the reasonable assumption that the small subile still has around 40,000 records,

even though zip codes aren’t unique. he point is, they’re almost unique.) As in Section 12.2, therefore, the space required

for the small Record Reconstruction Table is negligible, and the net efect is that we’ve reduced overall space requirements

by around 25 percent.

Note: Values of the artiicial identiier ZCS# could even be direct pointers into the small Record Reconstruction Table.

Certainly they can be just 16 bits, like the pointers in that table. I’ll have more to say about this possibility in Section 12.5.

he second approach to factoring using an “approximate FD” is to pretend the FD is genuine, moving the rare exceptions out

into a special ile of their own. hus, the vast majority of records in the original parts ile can be treated exactly as in Section

12.2. When a situation arises like that with zip code 95450 in our example above, we treat one of the pertinent zip / city / state

combinations in the usual way, and move the others out into the special ile. he result might look like this in our example:

Part numbers are unique in the large subile; zip codes are unique in the small subile; and part numbers (again) are

unique in the special-case subile. Moreover, no part number appears in both the large subile and the special-case subile.

Note: It’s true that access by part number is now more complicated than it was before, but at least the special-case Record

Reconstruction Table will be small enough to be memory-resident, as we’ll see in just a moment.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

199

File Factoring

Let’s do the storage arithmetic again. Suppose one tenth of one percent of the original ten million part records (in other

words, 10,000 part records in total) have to be treated as special cases in the foregoing sense. hen the large Record

Reconstruction Table still requires approximately 180MB. he small one still requires approximately 240KB. And the

special-case one has 40,000 pointers of 14 bits each, for a total of 70KB. Once again, the large table is the signiicant one,

and once again the net efect is that we’ve reduced overall space requirements by around 25 percent.

Incidentally, while I’m on the subject of factoring on the basis of approximate FDs, there’s one pragmatically important

special case to consider, as follows. Let F2 be a ield in some ile, and let F2 be “of low cardinality” (meaning it doesn’t

contain many distinct values compared to the total number of records in the ile overall).2 hen it’s necessarily “almost”

true that the FD

{ F1 } → { F2 }

holds true for all ields F1 in that same ile, and the factoring techniques described in the present subsection are thus

directly applicable.

Following on from the previous point, let me now add that there’s also one important special case of the general idea of

a ield being of low cardinality, and that’s the case in which most of the values in the ield are the same—for example,

a numeric ield in which most of the values are zero. Again, the factoring techniques described in this subsection are

directly applicable.

Factoring Isn’t Necessarily Based on FDs

he fourth and last response to the objection that the example of Section 12.2 makes little sense is simply this: While

there are certainly parallels between factoring as described so far and conventional normalization—observe in particular

that they both involve vertical decomposition—the truth is that factoring is, in a sense, more general than conventional

normalization. In particular, factoring doesn’t necessarily have to be based on functional dependencies as such3 (nor even

on “approximate” FDs). Rather, it can be based on absolutely any kind of statistical pattern or “clumpiness” in the data

whatsoever. he section immediately following describes some of these further possibilities.

12.4 Further Possibilities

Suppose the parts ile has already been factored as described in the previous section—in the subsection entitled “Factoring

Based on Approximate FDs”—to yield subiles that look like this:

Large subile Small subile

P# ZCS#

PNAME ZIP

COLOR CITY

WEIGHT STATE

ZCS#

PHONE#

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

200

File Factoring

As we’ve seen, the Record Reconstruction Table for the large subile still requires a fairly hety 180MB. What can we do

to reduce this space requirement still further?

Well, suppose now, not at all unrealistically, that there are very few distinct color / weight combinations in the large ile

(equivalently, in the original unfactored ile). For the sake of the example, suppose there are just 500 such combinations,

corresponding to (perhaps) ten diferent colors and 50 diferent weights. hen the combination of COLOR and WEIGHT

behaves like a low-cardinality ield, and we can deal with it accordingly. To be speciic, we can introduce an artiicial

identiier, CW# say, for each distinct color / weight combination, and factor the large subile above into two further

subiles that look like this:

Large subile Small subile (second level)

P# CW#

PNAME COLOR

CW# WEIGHT

ZCS#

PHONE#

Note: Since the ile we’re factoring here is itself already a subile, we might say we’re performing hierarchic factoring in

this particular example. he possibility of hierarchic factoring is, of course, a natural consequence of the fact that a subile

can be regarded as a ile in its own right, and it’s another reason why I prefer the term subile to the term factor. he fact

that a subile is a ile is important for exactly the same kinds of reasons that the fact that a subset is a set is important in

mathematics.

as a

e
s

alna

oro

eal responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

as a

e
s

alna

oro

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work

International opportunities

�ree work placements

al Internationa

or�ree wo

alna

oro

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Go Faster!

201

File Factoring

Anyway, here’s the storage arithmetic. he large Record Reconstruction Table now has only 50 million pointers instead of

60 million, reducing the space requirement for that table from 180MB to 150MB. he small one has just 4,500 pointers

of just nine bits each, for a total of 4,950 bytes, which we can ignore completely. Once again the large table is the only

important one, and now we’ve reduced overall space requirements by around 37.5 percent (37.5 percent of the original

requirement of 240MB, that is, as calculated near the beginning of Section 12.2).

We can do better. Instead of factoring out the zip / city / state combination and the color / weight combination separately,

why not factor them out together? he subiles might look like this (note the artiicial identiier ZCSCW#):

Large subile Small subile

P# ZCSCW#

PNAME ZIP

ZCSCW# CITY

PHONE# STATE

COLOR

WEIGHT

For simplicity, let’s abbreviate the expressions zip / city / state and color / weight to ZCS and CW, respectively. By our

assumptions, then, there are approximately 40,000 distinct ZCS values and 500 distinct CW values; thus, there are at most

20 million distinct ZCS / CW combinations, and hence at most 20 million records in the small subile. In practice, of

course, it’s impossible that all 20 million combinations actually exist (ater all, there were only 10 million part records to

start with); for the sake of the example, therefore, let’s suppose that just one million combinations actually do exist. Now

let’s do the storage arithmetic again. he large Record Reconstruction Table now has only 40 million pointers, reducing

the space requirement for that table still further to 120MB. he small one has six million pointers of 20 bits each, for a

total of 15MB. he grand total is thus 135MB, a saving of around 43.75 percent over the original.

Yet another possibility is to break ields up into subields (conceptually speaking) and then to treat those subields as

fully-ledged ields in their own right in the factoring process.4 In our running example, an obvious candidate for such

treatment is the PHONE# ield. he original parts ile has 10 million phone numbers, but it can’t have 10 million area

codes; in fact, let’s assume, as we did in Chapter 11 (Section 11.4), that there are just 250 distinct area codes. What’s more,

there’s a high correlation between area codes and zip codes; in fact, let’s assume, reasonably enough, that most zip codes

have just one area code (in other words, there’s an “approximate FD” from zip codes to area codes). So it makes sense to

split the PHONE# ield into AREA_CODE and REST, and then to factor out the AREA_CODE along with the ZCS and

CW information like this (note the artiicial identiier ZCSCWAC#):

Large subile Small subile

P# ZCSCWAC#

PNAME ZIP

ZCSCWAC# CITY

REST STATE

COLOR

WEIGHT

AREA_CODE

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

202

File Factoring

Now, this example difers from previous ones in that it has no efect on the large Record Reconstruction Table; rather,

its efect is on the large Field Values Table, whose space requirements are reduced by 30MB (ten million three-byte area

codes). At the same time, it adds an AREA_CODE column to the small Field Values Table—but that column is condensed

and requires only 750 bytes, which we can ignore. More important, it also adds a column of pointers to the small Record

Reconstruction Table, for an additional 2.5MB. he net saving is thus 28.5MB. (I can’t easily express this saving as a

percentage, because now the Field Values Table is involved as well as the Record Reconstruction Table.)

By way of summary, then, the general principle that the foregoing examples illustrate (both in this section and in the

previous one) is this:

•	 Let F1, F2, ..., Fn be distinct ields—possibly subields—within some given ile (where n is greater than one).

•	 Let the set of all of those ields be considered as a single combined ield F.

•	 Let F have cardinality c.

•	 hen, whenever c is small compared to the total number of records in the ile overall, it’s worth factoring F

out into a “small” subile, leaving an identiier behind in the “large” subile to serve as the necessary link to

that small ile. he identiier might be a user ield or it might be an introduced artiicial identiier, depending

on circumstances.

Note in particular the requirement that n be greater than one. Clearly there’s no point in factoring out just a single ield,

because if an identiier has to be let behind in the large ile, then that large ile will still have just as many ields as it

had before.5 To say it again, the major object of the overall factoring exercise is to reduce the size of the large Record

Reconstruction Table, and the way to do that is to reduce the number of ields in the large ile.

One last point to close this section: You might possibly be feeling there are some similarities between the notion of ile

factoring as described in this chapter and the notion of combined columns as discussed in Chapter 9 (Section 9.4)—and

indeed there are some similarities. he primary objective in both cases is certainly to save space (and as a matter of fact,

the savings obtained are comparable in the two cases). But there are some diferences too, of course. In a nutshell:

•	 Combining columns is a technique for mapping two or more ields to the same column in the Field Values

Table, where the ields in question are, in general, of diferent types (we aren’t talking about merged columns

here). his technique saves space in the Record Reconstruction Table by reducing the number of columns in

the Field Values Table. However, it does make it more diicult to search on the basis of columns other than

the leading one in any such column combination.

•	 By contrast, a large part of the point regarding ile factoring is precisely that distinct columns in the

Field Values Table aren’t combined into one. hus, searches on the basis of individual columns are still

straightforward. (In fact, as we’ve seen, we might even want to split one column in the Field Values Table

into two or more columns—or, more precisely, we might want to have two or more columns in the Field

Values Table for one ield in the user-level ile.)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

203

File Factoring

12.5 Record Reconstruction

What are the implications of factoring for the record reconstruction process? In order to consider this question, I think

it’s best to return to a much simpler example. Let’s go all the way back to the original parts example from Chapter 8. Fig.

12.1, a copy of Fig. 8.2, shows a ile corresponding to the parts relation of Fig. 8.1. Note: Of course, this example is really

much too simple to illustrate the need for factoring or any of the potential beneits described elsewhere in this chapter.

So I’ll just have to ask you to suspend disbelief and work through the example with me anyway.

Fig. 12.1: File corresponding to the parts relation of Fig. 8.1

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Go Faster!

204

File Factoring

Now let’s assume we want to factor out the color / city combination. As explained in Section 12.3, we’ll have to introduce

an artiicial identiier, CC# say, to link the resulting subiles together, logically speaking. hus, Figs. 12.2, 12.3, and 12.4

show, respectively, the subiles that result from this factoring, the corresponding Field Values Tables, and the corresponding

Record Reconstruction Tables. Note: With respect to the Field Values Tables in Fig. 12.3, I think it’s clearer not to merge

them together, though in practice they probably would be so merged; with respect to the Record Reconstruction Tables

in Fig. 12.4, I think it’s clearer to omit the direct pointers into the Field Values Tables that, again, they might contain in

practice (or not, as the case may be—recall that those pointers are basically just an optional extra anyway).

Fig. 12.2: Subiles after factoring out COLOR and CITY

Fig. 12.3: Field Values Tales for the subiles of Fig. 12.2

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

205

File Factoring

Fig. 12.4: Record Reconstruction Tables for the subiles of Fig. 12.2

Now let’s consider the problem of doing record reconstruction for, say, part records for parts in Oslo (I deliberately choose

an example in which there’s just one qualifying record, for simplicity). Noting that the CITY ield is in the small subile,

we see that the sequence of events must be as follows:

•	 Search column CITY of the small Field Values Table in Fig. 12.3 for the speciied value Oslo. We discover

that the sole record we want passes through cell [2,3] of the small Record Reconstruction Table (row 2

because the row range for Oslo is [2:2], and column 3 because column CITY is indeed the third column of

the small tables).

•	 Follow the zigzag passing through cell [2,3] of the small Record Reconstruction Table in Fig. 12.4. hat

zigzag looks like this:

[2,3], [3,1], [1,2]

he corresponding ield values are:

Oslo, cc3, Blue

•	 Now search column CC# of the large Field Values Table in Fig. 12.3 for the value cc3 (in efect, we’re using

the “candidate key” value in the small Field Values Table to ind the rows containing a corresponding

“foreign key” value in the large Field Values Table). We discover that the sole record we want passes through

cell [5,4] of the large Record Reconstruction Table.

•	 Follow the zigzag passing through cell [5,4] of the large Record Reconstruction Table in Fig. 12.4. hat

zigzag looks like this:

[5,4], [3,1], [6,2], [5,3]

he corresponding ield values are:

cc3, P3, Screw, 17.0

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

206

File Factoring

Reconstruction of the desired record is now complete. However, note the fact that we’ve had to traverse two separate

zigzags, “hooking them together” (so to speak) by means of the artiicial identiier CC#. Without going into details,

it should be clear that we’d have to follow a similar procedure in order to reconstruct, say, part records for parts with

weight 19.0, except that this time we’d have to use the “foreign key” value in the large Field Values Table to look up the

corresponding “candidate key” value in the small Field Values Table, instead of the other way around (because WEIGHT

is a ield in the large subile, not the small one).

One implication of the foregoing is, of course, that factoring can lead to some ineiciencies in the record reconstruction

process. However, matters are not as bad as they might seem. As I pointed out in Section 12.3 (in the subsection “Factoring

Based on Approximate FDs”), artiicial identiier values—CC# values in the example—can be pointers. If they are, then

instead of the associative lookup we had to do in the “WEIGHT = 19.0” example from the large Field Values Table to the

small one, we can now follow a pointer directly from that large table to the small Record Reconstruction Table (bypassing

the small Field Values Table entirely). Reconstruction “from the large to the small” will thus be more eicient.

What about the other direction (reconstructing “from the small to the large,” as in the “CITY = Oslo” example)? Well,

we can make this process more eicient too if we want, by carrying some additional row ranges in the small Field Values

Table (in the CC# column of that table, to be speciic). Fig. 12.5 shows what happens to the small Field Values Table in

the example if we adopt this approach.

Fig. 12.5: Small Field Values Tables with CC# row ranges for the large Record Reconstruction Table

By way of example, consider cell [1,1] of the table in Fig. 12.5. hat cell includes the row range [1:3]. hat row range in

turn shows that the rows in the large Record Reconstruction Table that correspond to CC# value cc1 are rows 1, 2, and

3. hus, instead of the associative lookup we previously had to do from the small Field Values Table to the large one, we

can now follow pointers directly from that small table to the large Record Reconstruction Table (bypassing the large Field

Values Table entirely). Reconstruction “from the small to the large” will thus also be more eicient than it was before.

12.6 Additional Beneits

he foregoing sections should be suicient to give you some idea of the possibilities inherent in ile factoring. For real

databases, where relations oten start out at the user level with many more than just eight attributes—and sometimes

with many more than ten million tuples—the savings achievable are likely to be much greater than those shown in the

examples (certainly more than the comparatively miserly percentages we saw in those examples). As I’ve said, factoring

can be based on any kind of “statistical clumpiness” in the data whatsoever. And the fact is, the vast majority of data in

the real world exhibits such “clumpiness” in great abundance; thus, the vast majority of data is a candidate for treatment

by means of the techniques described in this chapter.6

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

207

File Factoring

In this inal section, I’d like to point out that ile factoring has certain additional beneits as well, over and above its primary

one of reducing space requirements. To be speciic, it ofers certain beneits in connection with (a) aggregate queries and

(b) update operations. hose beneits are the subject of the next two subsections. First, though, it’s only fair to mention

one potential drawback too: namely, that replacing one large Record Reconstruction Table by two or more smaller ones

means we can’t have a “preferred” Record Reconstruction Table (as described in Chapter 7) that provides major-to-minor

orderings over all of the ields of the original ile. However, the Record Reconstruction Tables for the subiles—for the

“small” subile in particular—can still be “preferred” (as they are in Fig. 12.4, in fact), and in practice that’s likely to be

suicient. Why? Because the ields of the small subile are likely to be the ones over which orderings will most oten be

requested, as we’ll see in the subsection immediately following.

Aggregate Queries

Aggregate queries—see the discussion of the relational operator SUMMARIZE in Chapter 10, Section 10.5—naturally

tend to be framed in terms of ields in the small ile, precisely because those ields are the low-cardinality ones. In SQL

terms, for example, the following (“Sum weights by city”) is certainly a realistic query on the parts relation P—

SELECT DISTINCT P.CITY, SUM (P.WEIGHT) AS SUMWT

FROM P

GROUP BY P.CITY ;

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Go Faster!

208

File Factoring

—whereas the following (“Sum weights by name”) probably isn’t:

SELECT DISTINCT P.PNAME, SUM (P.WEIGHT) AS SUMWT

FROM P

GROUP BY P.PNAME ;

(I’m relying here on the fact that part names are “almost unique.”)

Let’s assume once again that we’re dealing with the original parts relation P with its attributes P#, PNAME, COLOR,

WEIGHT, and CITY (only). Let’s assume too (as in the previous section) that the ile corresponding to that relation P

has been factored as follows:

Large subile Small subile

P# CC#

PNAME COLOR

WEIGHT CITY

CC#

If the parts ile is as originally shown in Fig. 12.1, then here are the actual values of the two subiles (repeated from Fig. 12.2):

Observe now that if we partition the original ile by COLOR and CITY, then each row in the small ile corresponds to just

one partition in the result. So it’s not at all unreasonable to precompute certain aggregates for those partitions—compute

them at load time, that is—and keep the results with the rows in the small ile.7 For example, if we were to treat sums of

weights in this fashion, the small ile might look like this:

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

209

File Factoring

(I’ve shown the computed values as an extra ield of the ile, called SW. Of course, the computations aren’t all that interesting
in this particular example, but you get the general idea.)

Now suppose the user issues the SQL query from the start of this subsection (“Sum weights by city”):

SELECT DISTINCT P.CITY, SUM (P.WEIGHT) AS SUMWT

FROM P

GROUP BY P.CITY ;

At run time, then, instead of having to partition the large original ile by CITY and do a series of possibly lengthy

summations, the system can simply partition the small ile by CITY and do a series of much shorter summations instead.

Note: he savings can be particularly dramatic if there’s a HAVING clause to eliminate certain of the partitions before

the summations are done.

Analogous remarks apply to many other aggregate operators as well.8 Note in particular that the technique could help

in the case where the partitioning is done on the basis of a subield. he parts example doesn’t illustrate this point, but

“Count subscribers in the 415 area code” might be an example of a query that could beneit from treatment similar to

that described above.

Finally, ORDER BY requests too naturally tend to be framed in terms of ields in the small ile, again because those ields

are the low-cardinality ones. In SQL terms, for example, the following is certainly a realistic query on the parts relation P—

SELECT ...

FROM P

ORDER BY CITY, COLOR ;

—whereas the following probably isn’t:

SELECT ...

FROM P

ORDER BY CITY, PNAME ;

he relevance of factoring here should be obvious; in fact, I explained it earlier, when I said that the small Record

Reconstruction Table, at least, could still be a “preferred” one.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

210

File Factoring

Update Operations

he point here is essentially a simple one: When a new record is inserted, it’s likely that values in low-cardinality ields

within that record will already exist in the small ile, precisely because those ields are low-cardinality. For example, let p

be a new part record. hen it’s quite likely that p will involve a color and a city—and even a color / city combination, and

hence, implicitly, a CC# value too—that already exists in the small ile. (By contrast, of course, p will deinitely involve

a new part number, and possibly a new name and/or weight as well.) In general, in other words, insert operations will

typically “touch” the large ile only. Analogous remarks apply to delete operations also.

Endnotes

1. Note that the normalization process is basically a process of taking projections; in other words, the

decomposition operator is projection (the recomposition operator, by contrast, is join).

2. Recall from Chapter 10 that the cardinality of a set is the number of elements in that set. hus, when we

say some ield is of such and such cardinality, what we mean is that the set of values in that ield is of that

cardinality; in other words, we’re referring to the number of distinct values in that ield, not the number

counting duplicates if any.

3. In the interests of accuracy, I should point out that conventional normalization isn’t entirely based on

functional dependencies either. FDs take us only as far as Boyce/Codd normal form (BCNF). Fourth normal

form (4NF) relies on a generalization of functional dependencies called multivalued dependencies (MVDs).

Likewise, ith normal form (5NF) relies in turn on a generalization of MVDs called join dependencies. And

I’ve recently been involved myself in the deinition of a new sixth normal form (6NF), which relies on a

generalization of JDs (see reference [42]).

4. Factoring on the basis of subields is not the same as subield encoding (see the previous chapter), though

the concepts are related. By the way, you might have noticed that the irst two examples in this section,

though advertised as “further possibilities,” were really, like the examples in the previous section, based

on the idea of approximate FDs—and the same is at least arguably true of the subield example I’m about

to consider. Factoring techniques do exist that genuinely aren’t based in any way on approximate FDs, but

further details are beyond the scope of this book.

5. Note the implication that not all FDs, genuine or approximate, are useful for factoring. To be speciic, the FD

(or “FD” in quotes, possibly) LHS → RHS is useful for factoring only if the right-hand side involves at least

two attributes.

6. An interesting idea for consideration is the following: Instead of starting with exactly the relations speciied

by the database designer, it might be nice to begin by denormalizing the database entirely, joining all of the

relations together—conceptually, at any rate—into what’s sometimes called a “universal relation,” and then to

go on and use ile factoring repeatedly (hierarchically, in fact) to achieve a good disk representation. In this

way, attributes that started out in diferent user-level relations might even ind themselves mapped to ields

in the same ile (or subile, rather) internally.

7. Conceptually, that is. In practice, the results will be kept in the small Field Values Table (ater all, the iles

per se are just abstractions and don’t physically exist).

8. In particular, the row ranges in column CC# in Fig. 12.5 provide analogous support for the COUNT

operator.

http://bookboon.com/

